Abstract

This research uses a computer simulation in Python to model
a network of coupled pendula that has been constructed as a
macroscopic model for quantum mechanical systems. Our
system consists of 22 actual masses and 2 dummy masses
representing specified boundary conditions. A Runge-Kutta
integrator was used for the simulation because of its ability
to “cancel” the error associated with each timestep. The
damping parameter used in the simulation was
experimentally determined and could change over time to
achieve good convergence of the simulation. Simulation
results for a range of experimental conditions will be
presented to show resonance and wave tunneling
phenomena.

The Experimental Apparatus

The machine:

Drive Mechanism

Coupled Pendulum

The mechanism driving the system is a .5 horsepower electric
motor. This motor is capable of providing various frequencies
to the system, necessary to observe the system with different
inputs. The coupled pendulum is composed of steel masses
held up by fishing line. We are also using plastic blocks, used
to provide different effective lengths of the pendulum.

Experiments/measurements:

Measurements were taken of the system at various
frequencies and mass displacements were recorded. In order
to make these calculations and understand what is
happening, a relationship between quantum tunneling and
coupled-pendula dispersion need to be understood.
Calculations were made using a Runge-Kutta integrator with
a time dependent damping constant.

Quantum/Coupledpendula
Dispersion Relation

Particles that travel through space can be treated as a
probability distribution. In quantum mechanics the probability
of particle position is modeled as a wave.

Source: Physics Stack Exchange

Schrédinger Equation in one dimension:
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After considering “local” solutions of the form:

Y(x,t) = ¥, cos(kx — wt + ¢)

And transforming this Fourier representation into differential
equations, a dispersion relation can be found, and
wavenumber can be solved for:
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Now we consider our system of coupled pendula

The net force'on each mass of our system1 is as follows:
g
m; 2 S0 =m LAt ks (Bisa — 28 + A1)
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When we take the limit of a continuous distribution of mass,

and Fourier analysis, we can solve similarly for the
wavenumber and obtain:
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Damping Coefficients/Results

Three different damping coefficients were considered. In Fig.1 we
investigated a high, constant damping coefficient.
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Fig. 1: High, Constant Damping

Amphtudes become too Iow to study over time.
In Fig.2 we considered a low, constant damping coefficient.
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This type of chaotic motion does not settle down quick enough.
In Fig.3 we consider an initially high damping constant that settles down
over time.

Fig.2: Low, constant damping

Fig.3: Time dependent
damping

A time dependent damping constant settles chaotic motion and provides
large enough amplitudes to study.

Results investigating amplitudes vs frequencies with a decreasing
damping coefficientis provided below.

We are looking for resonant frequency. In our simulation, it appears as if
there is an interesting resonance triplet in which there is a build-up in
amplitude, a drop-off, and then large amplitude resonance. These
resonance patterns appear in chemistry. It does appear that our system
does reach resonant frequency at 0.7 Hz for this simulation.

Future Work:

Further simulations at more frequencies to study this resonance
frequency triplet as well as observe quantum tunneling behaviors at
resonant frequencies.

With respect to quantum tunneling, we plan to install a very large
potential well to the system and try to observe tunneling phenomena.



